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Abstract
We investigate the interplay of phonons and correlations in superconducting
pairing by introducing a model Hamiltonian with on-site repulsion and
couplings to several vibration branches having the Cu–O plane of the cuprates
as a paradigm. We express the electron–phonon (EP) coupling through two
force constants for O–Cu and O–O bond stretchings. Without phonons, this
reduces to the Hubbard model, and allows purely electronic W = 0 pairing.
A W = 0 pair is a two-body singlet eigenstate of the Hubbard Hamiltonian,
with no double occupancy, which gets bound via interactions with background
particles. Indeed, this mechanism produces a Kohn–Luttinger-likepairing from
the Hubbard repulsion, provided that its symmetry is not severely distorted.
From the many-body theory, a canonical transformation extracts the effective
two-body problem, which lends itself to numerical analysis in case studies. As
a test, we use as a prototype system the CuO4 cluster. We show analytically
that at weak EP coupling the additive contributions of the half-breathing modes
reinforce the electronic pairing. At intermediate and strong EP coupling and
U ∼ t , the model behaves in a complex and intriguing way.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

While the Fröhlich mechanism of conventional superconductivity is driven by phonon
exchange, the pairing mechanism in highly correlated narrow band systems could have a
predominantly electronic origin [1] and the Cu–O plane of cuprates is the most frequently
discussed example. Although this remains a very controversial issue, most authors probably
accept at least the conceptual importance of a lattice counterpart of the Kohn–Luttinger idea [2]
that attractive interactions result from mere repulsion. The renormalization group approach [3]
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to the Hubbard model shows that such a superconducting instability in the dx2−y2 channel is
dominant near half-filling, confirming the results obtained with the FLEX approximation [4].
One definition of pairing is �̃ < 0, where

�̃(N + 2) = E(N + 2) + E(N) − 2E(N + 1), (1)

and E(N) is the ground state energy of the system with N fermions; this criterion is suitable
for finite cluster calculations by exact diagonalization methods. �̃ < 0 was indeed observed
in particular Hubbard clusters [5, 6], but in many other examples with on-site repulsion on
every site a large �̃ > 0 was found [7, 8]. The W = 0 theory [9–11] gives a systematic
method for producing and analysing examples of singlet pairing by repulsive interactions; it
also allows validating |�̃| as the pairing binding energy. In this framework the non-Abelian
symmetry group of the underlying graph and the resulting degeneracy are crucial for the pairing
mechanism. The fillings and the symmetry channels where the W = 0 pairing can occur are
determined in full generality by the W = 0 theorem [12]; these symmetries achieve the same
result as high angular momentum and parallel spins in the Kohn–Luttinger [2] continuum
approach.

Anyway, a purely electronic theory misses practically and conceptually important
features of this complicated problem. First, many high TC compounds exhibit a quite
noticeable doping-dependent isotope effect [13], suggesting that electron–phonon (EP)
interactions are important and should be included in the theory. In addition, there is
experimental evidence [14] that the half-breathing Cu–O bond stretching mode at k =
(π, 0), (0, π) is significantly coupled with the doped holes in the superconducting regime
and its contribution may be relevant for the dx2−y2 pairing [15–17]. A radical, yet serious
criticism of all electronic mechanisms was put forward by Mazumdar and co-workers [18].
They suggested that any pairing in Hubbard clusters has doubtful physical interpretation due
to the neglect of the lattice degrees of freedom and the Jahn–Teller (JT) effect. They argued
that JT distortions might well cause a larger energy gain of the system with N + 1 particles,
and that could reverse the sign of �̃ obtained at fixed nuclei; in this case the pairing would
be just an artefact of the Hubbard model. This even led the authors to the conjecture that any
�̃ < 0 due to an electronic mechanism is just a finite size effect, which vanishes for large
systems like the JT effect does. Below, we shall show that the Mazumdar et al argument [18],
based on a static Jahn–Teller approximation, can break down in a peculiar and nontrivial way
when more flexible wavefunctions are allowed; thus, phonon pairing and W = 0 pairing can
be compatible, depending on the symmetries of both the pair and vibration and on frequencies.

The Hubbard–Holstein model, where electrons are coupled to a local Einstein phonon,
provides a simple way to include both strong electronic correlations and EP interactions. Much
is known about the possibility of a superconducting phase in this model. Pao and Schuttler [19]
applied the numerical renormalization group techniques within the FLEX approximation and
found that in the square geometry s-wave pairing is enhanced by phonons, while dx2−y2 pairing
is suppressed. In the strong EP regime a Lang–Firsov [20] transformation maps the Hubbard–
Holstein model in an effective Hamiltonian for hopping polarons with a screened on-site
interaction Ũ = U − g2

ω
, where U is the Hubbard repulsion, ω is the phonon frequency, and

g is the EP coupling constant. If overscreening is attained, Ũ < 0 becomes an effective
attraction and one gets bipolaronic bound states [21, 22]; however, it is still unclear whether
they can exist as itinerant band states [23, 24]. Petrov and Egami [25] found �̃ < 0 in a doped
eight-site Hubbard–Holstein ring at strong enough EP coupling, while otherwise the normal
repulsion prevails. This situation is unavoidable in the one-dimensional repulsive Hubbard
model, where no superconducting pairing exists.



Electron–phonon interactions in the W = 0 pairing scenario 4847

In this paper we take the view that one of the sound experimental facts about the CuO plane
in all cuprates is that the geometry permits W = 0 pairs which avoid completely the strong
hole–hole repulsion. It is therefore highly plausible that such pairs are important ingredients of
the theory, provided that there is a way out of the Mazumdar et al [18] argument. Anyway, it is
not obvious that the phonons will reinforce the attraction while preserving the symmetry. More
generally, some vibrations could be pairing and others pair breaking. When lattice effects are
introduced in the W = 0 scenario, the situation is very different from the Petrov and Egami [25]
model, when, as in the conventional (Fröhlich) mechanism, phonons overscreen the electron
repulsion; what happens if electronic screening already leads to pairing?

To address these problems we use an extension of the Hubbard model in which bond
stretchings dictate the couplings to the normal modes of the C4v-symmetric configuration.
This is physically more detailed than the Hubbard–Holstein model, and is not restricted to
on-site EP couplings that would be impaired by a strong Hubbard repulsion.

The plan of the paper is the following. After introducing the model Hamiltonian in the
next section, we devote section 3 to a detailed derivation of the effective interactions between
holes in the W = 0 pair, which is obtained by extending a previous Hubbard model treatment.
Our canonical transformation approach is quite general for weak EP coupling and corresponds
to the inclusion of all diagrams involving one-phonon and electron–hole pair exchange due to
correlations. We specialize in section 4 to the prototype CuO4 cluster, describing electronic
states and vibration modes. The effective interaction is calculated explicitly in section 5. Next,
we develop a theory based on the Jahn–Teller operator in section 6; in this way we want to test
the reliability of that approximation in modelling the behaviour of W = 0 pairs in the presence
of Jahn–Teller-active modes. The numerical results of the full theory are then exposed and
discussed in section 7; the exact data for realistic vibration frequencies disagree from those
of section 6 but are in accord with the canonical transformation approach of section 5. The
agreement is excellent at weak coupling, but the analytical approach is qualitatively validated
also at intermediate coupling. Finally section 8 is devoted to the conclusions.

2. Model

We start from the Hubbard model with on-site interaction U and expand the hopping
integrals ti, j (ri , r j) in powers of the displacements ρi around a C4v-symmetric equilibrium
configuration:

ti, j (ri , r j ) � t0
i, j (ri , r j) +

∑
α

[
∂ ti j(ri , r j )

∂rα
i

]
0

ρα
i +

∑
α

[
∂ ti j(ri , r j )

∂rα
j

]
0

ρα
j , (2)

where α = x, y. Below, we write down the ρα
i in terms of the normal modes qην :

ρα
i = ∑

ην Sα
ην(i)qην , where η is the label of an irreducible representation (irrep) of the

symmetry group of the undistorted system and ν is a phonon branch.
Thus, treating the Cu atoms as fixed, for simplicity, one can justify an electron–lattice

Hamiltonian:

Hel−latt = H0 + Vtot. (3)

Here H0 = H n
0 + H e

0 is given by

H0 =
∑

η

h̄ωη,νb†
η,νbη,ν +

∑
i, jσ

t0
i, j (ri , r j )(c

†
iσ c jσ + h.c.), (4)

where ωη,ν are the frequencies of the normal modes with creation operator b†
η,ν , while c†

iσ

creates a fermion of spin σ in site i . Moreover, let M denote the O mass, ξη,ν = λην

√
h̄

2Mωη,ν
,
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with λην numbers of order unity that modulate the EP coupling strength. Then, Vtot = V + W
reads

Vtot =
∑
η,ν

ξη,ν(b
†
η,ν + bη,ν)Hη,ν + U

∑
i

ni↑ni↓; (5)

the Hη,ν operators are given by

Hη,ν =
∑
i, j

∑
α,σ

{
Sα

ην(i)

[
∂ ti j(ri , r j )

∂rα
i

]
0

+ Sα
ην( j)

[
∂ ti j(ri , r j)

∂rα
j

]
0

}
(c†

i,σ c j,σ + h.c.). (6)

In previous work we have shown that the pure Hubbard model HH = H e
0 + W defined

on the Cu–O plane and on the simple square also admits two-body singlet eigenstates with
no double occupancy on lattice sites. We referred to them as W = 0 pairs. W = 0 pairs
are therefore eigenstates of the kinetic energy operator H e

0 and of the Hubbard repulsion W
with vanishing eigenvalue of the latter. The particles forming a W = 0 pair have no direct
interaction and are the main candidates for achieving bound states in purely repulsive Hubbard
models [26–28]. In order to study whether the W = 0 can actually form bound states in
the many-body interacting problem, we developed a canonical transformation of the Hubbard
Hamiltonian [26], which enables us to extract the effective interaction between the particles
forming the pairs. Pairing was found in small symmetric clusters and large systems as well.

In the next section we wish to derive an effective interaction between the particles in the
pair suitable for Hel−latt , by generalizing the canonical transformation approach of [26].

3. Canonical transformation

In this section we assume that the system has periodic boundary conditions with particle
number N ; we denote the phonon vacuum by |0〉〉 and the non-interacting Fermi sphere by
|�0(N)〉. The creation operator of a W = 0 pair is obtained [12] by applying an appropriate
projection operator to c†

k↑c†
k′↓, where the labels denote Bloch states. If we add a W = 0

pair to |�0(N)〉 ⊗ |0〉〉, the two extra particles, by definition, cannot interact directly (in first
order). Hence their effective interaction comes out from virtual electron–hole (e–h) excitation
and/or phonon exchange and in principle can be attractive. To expand the interacting (N + 2)-
fermion ground state |0(N + 2)〉, we build a complete set of configurations in the subspace
with vanishing z spin component, considering the vacuum state |�0(N)〉 ⊗ |0〉〉 and the set of
excitations over it.

We start by creating W = 0 pairs of fermions over |�0(N)〉⊗|0〉〉; we denote by |m〉⊗|0〉〉
these states. At weak coupling, we may truncate the Hilbert space to the simplest excitations,
i.e., to states involving one e–h pair or one phonon created over the |m〉 ⊗ |0〉〉 states. We
define the |m〉 ⊗ |q〉〉 states, obtained by creating a phonon denoted by q = (η, ν) over the
|m〉 ⊗ |0〉〉 states. Finally, we introduce the |α〉 ⊗ |0〉〉 states, obtained from the |m〉 ⊗ |0〉〉
states by creating one electron–hole (e–h) pair.

The approximation can be systematically improved by including two or more electron–
hole pairs and excitations in the truncated Hilbert space, at the cost of heavier computation.

We now expand the interacting ground state in the truncated Hilbert space:

|0(N + 2)〉 =
∑

m

am|m〉 ⊗ |0〉〉 +
∑
m,q

am,q |m〉 ⊗ |q〉〉 +
∑

α

aα|α〉 ⊗ |0〉〉 (7)

and set up the Schrödinger equation

Hel−latt|0(N + 2)〉 = E |0(N + 2)〉. (8)
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We now consider the effects of the operators H0 and Vtot on the terms of |0(N + 2)〉.
Choosing the |m〉 ⊗ |0, q〉〉, |α〉 ⊗ |0〉〉 states to be eigenstates of the noninteracting term H0

we have, understanding h̄,

H0|m〉 ⊗ |0〉〉 = Em |m〉 ⊗ |0〉〉, (9)

H0|m〉 ⊗ |q〉〉 = (Em + ωq)|m〉 ⊗ |q〉〉, (10)

H0|α〉 ⊗ |0〉〉 = Eα|α〉 ⊗ |0〉〉. (11)

Let us consider the action of V and W on the same states, taking into account that V creates
or annihilates up to one phonon and one e–h pair, and W is diagonal in the phonon states and
can create or destroy up to two e–h pairs:

(V + W )|m〉 ⊗ |0〉〉 =
∑
m′,q

V q
m,m′ |m ′〉 ⊗ |q〉〉 +

∑
m′

Wm,m′ |m ′〉 ⊗ |0〉〉 +
∑

α

Wm,α |α〉 ⊗ |0〉〉,

(12)

(V + W )|m〉 ⊗ |q〉〉 =
∑
m′

V q
m,m′ |m ′〉 ⊗ |0〉〉 +

∑
α

V q
m,α|α〉 ⊗ |0〉〉 +

∑
m′

Wm,m′ |m ′〉 ⊗ |q〉〉,
(13)

(V + W )|α〉 ⊗ |0〉〉 =
∑
m′,q

V q
α,m′ |m ′〉 ⊗ |q〉〉 +

∑
α′

Wα,α′ |α′〉 ⊗ |0〉〉 +
∑

m

Wα,m |m〉 ⊗ |0〉〉.

(14)

The Schrödinger equation yields three coupled equations for the coefficients a:

(Em − E)am +
∑
m′

am′ Wm,m′ +
∑
m′,q

am′,q V q
m,m′ +

∑
α

aαWm,α = 0; (15)

(Em + ωq − E)am,q +
∑
m′

am′,q Wm,m′ +
∑
m′

am′ V q
m,m′ +

∑
α

aαV q
m,α = 0; (16)

(Eα − E)aα +
∑
α′

aα′ Wα,α′ +
∑

m

am Wα,m +
∑
m,q

am,q V q
α,m = 0. (17)

We define renormalized eigenenergies E ′
α by taking a linear combination of the α states in

such a way that

(H0 + W )α,α′ = δαα′ E ′
α. (18)

Equation (17) can be solved for the aα coefficients:

aα = 1

E ′
α − E

(∑
m

am Wα,m +
∑
m,q

am,q V q
α,m

)
. (19)

Substituting aα in equation (16) one gets

(Em + ωq − E)am,q +
∑
m′

am′,q Wm,m′ +
∑
m′

am′ V q
m,m′ +

∑
m′,q ′

am′,q ′

(∑
α

V q
m,αV q ′

α,m′

E ′
α − E

)

+
∑
m′

am′

(∑
α

V q
m,αWα,m′

E ′
α − E

)
= 0. (20)

Here, two important simplifications allow us to proceed. First, as in [10], equation (49), one
can show that

Wm,m′ = W (d)
m,m′ + δm,m′ WF; (21)
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W (d)

m,m′ is the direct interaction among the particles forming the pair and WF comes from the
average over the occupied states on the Fermi sphere and is an m-independent constant; since
W (d)

m,m′ vanishes for the W = 0 property, it holds that∑
m′

am′,q Wm,m′ = am,q WF. (22)

Moreover,

∑
m′,q ′

am′,q ′

(∑
α

V q
m,αV q ′

α,m′

E ′
α − E

)
= am,q

(∑
α

|V q
m,α|2

E ′
α − E

)
. (23)

Indeed, V is a one-body operator for the fermions; so the electron–hole pair in the α state must
be created by one V factor and annihilated by the other; in this way, the W = 0 pair is not
touched. With these simplifications, the contributions in equations (22) and (23) can be taken
over to the lhs of equation (20), where they just renormalize the eigenenergies of the |m〉⊗|q〉〉
states. Thus, Em + ωq → E ′

m + ωq , and equation (20) can easily solved for the am,q , as we did
for the aα in equation (19):

am,q = 1

E ′
m + ωq − E

∑
m′

am′

(
V q

m,m′ +
∑

α

V q
m,αWα,m′

E ′
α − E

)
. (24)

Finally, substituting equations (19), (24) into (15), we can write the Schrödinger equation in
terms of only the |m〉 states, with the excitation-mediated interactions and with renormalized
quantities:

0 = (Em − E)am + am WF +
∑

m′,m′′ ,q
am′

V q
m,m′′ V

q
m′′,m′

E ′
m′′ + ωq − E

+
∑
m′,α

am′
Wm,αWα,m′

E ′
α − E

+ 2
∑

m′,m′′ ,q,α

am′
V q

m,m′′ V
q

m′′,αWα,m′

(E ′
m′′ + ωq − E)(E ′

α − E)

+
∑

m′,m′′,q,α,α′
am′

Wm,αV q
α,m′′ V

q
m′′,α′ Wα′,m′

(E ′
m′′ + ωq − E)(E ′

α − E)(E ′
α′ − E)

. (25)

Here, the last two terms are of higher order and must be dropped; E is the ground state of the
system with N + 2 fermions; however, equation (25) is of the form of a Schrödinger equation
with eigenvalue E for the added pair. We interpret the am as the coefficients in the expansion
over the W = 0 pairs of the wavefunction of the dressed pair, |ϕ〉 ≡ ∑

m am|m〉 ⊗ |0〉〉. This
obeys the Cooper-like equation

Hpair|ϕ〉 = E |ϕ〉 (26)

with the same E as in equation (8), but with an effective two-body Hamiltonian:

Hpair ≡ H0 + WF + S[E]. (27)

Here S is the E-dependent effective scattering operator

S[E]m,m′ =
∑

α

Wm,αWα,m′

E ′
α − E

+
∑
m′′,q

V q
m,m′′ V

q
m′′,m′

E ′
m′′ + ωq − E

, (28)

and therefore equation (26) must be solved self-consistently. Let us examine in detail the
structure of the S[E] contribution. The matrix elements Sm,m′ may be written as

Sm,m′ = (Weff )m,m′ + Fmδm,m′ , (29)
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where Weff is the true effective interaction between the electrons in the m states, while the
other term represents the forward scattering amplitude F .

The first-order self-energy WFδm,m′ and the forward scattering term Fmδm,m′ are diagonal
in the indices m and m ′, and therefore they renormalize the non-interacting energy Em of the
m states:

Em → E (R)
m = Em + WF + Fm . (30)

If the effective interaction Weff is attractive and produces bound, localized states, the spectrum
of the Schrödinger equation with the Hamiltonian in equation (27) contains discrete states
below the unpaired states. In an extended system, we have bound states below the threshold
of the continuum. The threshold may be defined (in clusters and in extended systems) by

E (R)
T ≡ min{m} [E (R)

m (E)], (31)

which, according to equation (30), takes into account all the pairwise interactions except those
between the particles in the pair. Note that this is an extensive quantity, i.e. an (N + 2)-particle
energy. The ground state energy E may be conveniently written as

E = E (R)
T + �; (32)

� < 0 indicates a Cooper-like instability of the normal Fermi liquid and its magnitude
represents the binding energy of the pair.

Below, we solve equation (26) explicitly for the CuO4 cluster with open boundary
conditions, where the above theory is readily applied.

4. Prototype cluster

As an illustrative application of the above pairing scheme, in this preliminary work we focus
on CuO4, the smallest cluster yielding W = 0 pairing in the Hubbard model. This requires
four holes (total number, not referred to half-filling); such a doping is somewhat unrealistic,
but larger C4v-symmetric clusters and the full CuO2 plane also show W = 0 pairing in
the doping regime relevant for cuprates [9, 26]. Remarkably, in the pure Hubbard model,
one can verify that � = �̃(4) at least at weak coupling [9], which demonstrates that �̃

has the physical meaning of an effective interaction. CuO4 represents a good test of the
interplay between electronic and phononic pairing mechanisms since we can compare exact
diagonalization results with the analytic approximations of the canonical transformation. A
further merit of this model is that it demonstrates dramatically the decisive role of symmetry
in the electronic pairing mechanism: any serious distortion of the square symmetry restores
the normal �̃ > 0 situation [9]. Since vibrations cause distortions it is not evident a priori that
they tend to help pairing; in particular, we may expect Jahn–Teller distortions to prevent
W = 0 pairing altogether. On the other hand, the Fröhlich mechanism of conventional
superconductivity is based on phonon exchange. This suggests that the role of EP coupling is
complex.

CuO4 allows only coupling to phonons at the centre or at the edge of the Brillouin zone;
however, phonons near the edge are precisely those most involved [14, 15]. Even in this
small system the virtually exact diagonalizations are already hard and the next C4v-symmetric
example, the Cu5O4 cluster [27], is much more demanding because of the number of vibrations
and the size of the electronic Hilbert space.

Starting with the C4v-symmetric arrangement, any displacement of the oxygens in the
plane can be analysed in irreps, A1, A2, B1, B2, E1, E2; see figure 1.
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A1 A2 B1 B2

E1x E1y E 2x E 2y

t

t

t

t

1

2

3

4

tox

tox

tox

tox

O

O

O

O

Figure 1. A pictorial representation of the ionic displacements in the eight normal modes of the
CuO4 cluster, labelled according to the irreps of the C4v Group.

We suppose that the hopping integrals depend only on the bond lengths1. Hence, the EP
coupling is expressed through just two parameters g and gox, defined as follows: denoting
e.g. by t1 the integral of hopping between oxygen 1 and the Cu and by t1,2

ox the one between

oxygens 1 and 2 (see figure 1), g ≡ [ ∂ t1

∂ |r1| ]0 and gox ≡ [ ∂ t1,2
ox

∂ |r1−r2| ]0. We take g < 0 since
a positive Cu–O hopping integral decreases as the Cu–O distance is increased. On the other
hand, gox > 0, since physically the O–O hopping integral has the opposite sign with respect the
Cu–O one. Following equations (3)–(6), the second-quantized electron–lattice Hamiltonian
reads

H CuO4
el−latt = εp

∑
i,σ

ni,σ + εd

∑
σ

nd,σ +
∑

η

h̄ωηb†
ηbη + t

∑
iσ

(d†
σ piσ + h.c.)

+ tox

∑
iσ

(p†
iσ pi+1σ + h.c.) + U

(∑
i

n(p)

i↑ n̂(p)

i↓ + n̂(d)
↑ n̂(d)

↓

)
+

∑
η

ξη(b
†
η + bη)Hη,

(33)

where p†
iσ and piσ are the hole creation and annihilation operators on the oxygens i = 1, . . . , 4

with spin σ = ↑,↓, d†
σ and dσ are the hole creation and annihilation operators on the central

copper site, while n(p)

iσ = p†
iσ piσ and n(d)

σ = d†
σ dσ are the corresponding number operators.

Henceforth we set εp = εd = 0 for convenience, since this simple choice is adequate for the
present qualitative purposes. Also, we are assuming for simplicity that the oxygen–oxygen

1 Some authors use an alternating sign convention for the bonds from a given Cu site. However, this is just a gauge;
in the present CuO4 case, this corresponds to changing the sign of two opposite oxygen orbitals. Even in the full
plane, starting from positive t integrals, one can introduce staggered signs by negating a sublattice of O orbitals; then,
one can arrange opposite signs for the bonds of each O by simply negating a sublattice of Cu. All this has no physical
implications, and in our opinion does not help to visualize the real symmetry of the problem.
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hopping tox is zero, and O–O hoppings are important only once the ions are moved. Similar
results are obtained using a realistic tox, except that pair binding energies are somewhat reduced.

The Hη matrices are given by

HA1 = 1

2
g

∑
iσ

(d†
σ piσ + h.c.) +

1√
2

gox

∑
iσ

(p†
iσ pi+1σ + h.c.);

HA2 = 0;
HB1 = 1

2 g
∑

σ

(d†
σ p1σ − d†

σ p2σ + d†
σ p3σ − d†

σ p4σ + h.c.);

HB2 = 1√
2

gox

∑
σ

(p†
1σ p2σ − p†

2σ p3σ + p†
3σ p4σ − p†

4σ p1σ + h.c.);

HE1x = 1√
2

g
∑

σ

(−d†
σ p1σ d†

σ p3σ + h.c.)

+ 1
2 gox

∑
σ

(−p†
1σ p2σ + p†

2σ p3σ + p†
3σ p4σ − p†

4σ p1σ + h.c.);

HE1y = 1√
2

g
∑

σ

(d†
σ p2σ − d†

σ p4σ + h.c.)

+ 1
2 gox

∑
σ

(p†
1σ p2σ + p†

2σ p3σ − p†
3σ p4σ − p†

4σ p1σ + h.c.);
HE2x = 1

2 gox

∑
σ

(p†
1σ p2σ − p†

2σ p3σ − p†
3σ p4σ + p†

4σ p1σ + h.c.);
HE2y = 1

2 gox

∑
σ

(−p†
1σ p2σ − p†

2σ p3σ + p†
3σ p4σ + p†

4σ p1σ + h.c.).

(34)

In order to make contact with the physics of cuprates, let us discuss the connection between
the normal modes of the CuO4 cluster and the phonon modes of the Cu–O planes. There is
experimental evidence [15] that the possibly relevant modes for superconductivity lie on the
CuO2 planes and have a Cu–O bond stretching origin. In particular the LO half-breathing
mode with k = (π, 0), (0, π) is believed to couple significantly with the doped holes in
the superconducting regime. In the CuO4 cluster the half-breathing modes are contained in
the breathing mode A1 and in the quadrupolar mode B1 by means of the linear combination
qA1 ± qB1 . We argue that qualitatively the effect of the coupling with the A1 and B1 modes
should give us clues about the interplay between electronic W = 0 pairing and phonon
exchange.

5. Lowest order effective interaction in CuO4

The mere Hubbard CuO4 cluster with O–O hopping tox = 0 yields [9] �̃(4) < 0, due to a
couple of degenerate W = 0 bound pairs, in the A1 and B2 irreps of the C4v group; therefore
in equation (28) we set the m = m ′ labels accordingly. At weak coupling, we may simplify
equation (28), neglecting all renormalizations; the phonon-mediated interaction for the B2 pair
reads

∑
m′′,q

V q
B2,m′′ V

q
m′′,B2

E ′
m′′ + ω′

q − E
= −4g2

ox

λ2
B2

2εA1 + ωB2 − E
. (35)

Note that, in the denominator in the rhs, 2εA1 + ωB2 is the energy of an unrenormalized excited
|m〉 ⊗ |q〉〉 state, which at weak coupling is higher than the ground state energy E ; hence the
rhs must be negative and the B2 phonon is synergetic with electronic pairing. On the other
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Figure 2. Analytical results of the canonical transformation: pair binding energy in the A1 and B2
sectors as a function of gox. Here we used λη = 1 for every mode, t = 1 eV, tox = 0, U = 1 eV;
gox is in units of ε0/ξ0 = 1 eV Å−1, � is in eV.

hand, the vibronic effective interaction for the A1 pair is

∑
m′′,q

V q
A1,m′′ V

q
m′′,A1

Em′′ + ω′
q − E

= −4

3
g2

ox

(
λ2

B2

2εA1 + ωB2 − E

+
2λ2

A1

2εA1 + ωA1 − E
− λ2

E1

2εA1 + ωE1 − E
− λ2

E2

2εA1 + ωE2 − E

)
. (36)

This shows that in the A1 sector the total sign depends on the relative weight of attractive and
repulsive contributions. Equations (35), (36) show that at weak coupling A1 and B2 modes
are synergetic to the W = 0 pairing, while both longitudinal and transverse E modes are pair
breaking. The half-breathing modes that are deemed most important [15, 16] are A1 ± B1

combinations, but B1 does not appear in equations (35), (36). The numerical calculations
reported below confirm these findings over a broad range of parameters.

For the sake of argument, in the explicit calculations we took all the normal modes with
the same energy ε0 = h̄ω0 = 10−1 eV and λη = 1. This sets the length scale of lattice effects

ξ0 =
√

h̄
2Mω0

� 10−1 Å where we used M = 2.7 × 10−26 kg for oxygen.

With this choice, the Cooper-like equation (25) reads

(2εA1 − E) − U 2

16

(
1

εB1 + εA1 − E
− 1

2

1

εA1 + εA′
1
− E

)
− 4

3
g2

ox
1

2εA1 + ω0 − E
= 0 (37)

in the A1 channel and

(2εA1 − E) − U 2

16

(
1

εB1 + εA1 − E
− 1

2

1

εA1 + εA′
1
− E

)
− 4g2

ox
1

2εA1 + ω0 − E
= 0 (38)

for B2 pairs. The eigenvalue E , like in equation (8), is the total energy of the cluster; it must be
compared with the threshold E (R)

T of equation (31), whose noninteracting limit is E (R)
T = 2εA1

since the degenerate level energy (see table A.2, appendix A) is εp = 0. It turns out that using
equation (32) in the weak coupling approximation, that ignores renormalizations, the effective
interaction is � = E − 2εA1 ; in appendix B we verify by perturbation theory that, like in the
Hubbard model, � = �̃(4); this supports our interpretation of �̃ as minus the pairing energy.

The trends of � in both channels are shown in figure 2. The vibrations split the degeneracy
of the W = 0 pairs, effectively lowering the symmetry like a nonvanishing tox. Pairing is
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enhanced in the A1 sector as well, albeit less than in B2; without phonons, � � −20 meV for
both the W = 0 pairs.

6. Jahn–Teller mixing of electronic ground states and pairing

If the inclusion of the lattice degrees of freedom really systematically leads to �̃ > 0, purely
electronic cluster models become totally irrelevant to superconductivity, as was argued [18].
However small, the CuO4 cluster yields electronic pairing and allows one to test this important
point.

In this section we set up a conventional calculation of the JT effect involving degenerate
electronic ground states and their mixing with the vibrations. We first take the nuclei as frozen
in a C4v-symmetric configuration and diagonalize the purely electronic part of the Hamiltonian:

H CuO4
el = t

∑
iσ

(d†
σ piσ + h.c.) + U

(∑
i

n(p)

i↑ n(p)

i↓ + n(d)
↑ n(d)

↓

)
. (39)

As before, we are using tox = εp = εd = 0.
The JT effect arises if the ground state of H CuO4

el is degenerate, with a ground state multiplet
{|1〉, . . . , |n〉} such that H CuO4

el |k〉 = E0|k〉. If we take matrix elements of H CuO4
el−latt in

this truncated (n-dimensional) electronic basis, integrating over electrons and keeping boson
operators, we get the dynamical JT Hamiltonian [29, 30], with matrix elements

H JT
α,β =

(
E0 +

∑
η

h̄ωηb†
ηbη

)
δα,β + 〈α|V |β〉. (40)

It is worth noting that neglecting the nuclear kinetic energy (i.e. − h̄2

2M

∑
i

∂2

∂2ri
→ 0) and treating

the nuclear positions as variational parameters corresponds to the static JT Hamiltonian, but
we follow the dynamic treatment which is superior.

In the following we assume that the initial configuration is stable with respect to the
mode A1 which only changes the scale of the CuO4 molecule. Since this mode does not
produce any JT distortion, it is not involved in the arguments of [18]. In this section, we study
�̃(4) in this approximation, according to equation (1). The ground state with two holes is a
nondegenerate totally symmetric singlet unaffected by the JT effect; in the other cases, the use
of the Hamiltonian (40) is justified provided that the excited states are several phonon energies
above the ground state.

6.1. Three-hole ground state mixing

With three holes the ground state belongs to the three-dimensional irrep of S4 which in C4v

breaks into B1 ⊕ E. To illustrate the electronic structure and its dependence on distortions,
in figure 3 we show the adiabatic potential energy surface projected along the B2 distortion.
Projecting on the other directions, we obtain similar trends. It is clear that the ground state
multiplet is well separated from the excited states and hence this treatment of the JT effect is
well justified.

Since E ⊗ E contains all the irreps of C4v, all the normal modes are JT active in this
case. Following equation (40), we computed the following V matrix elements in the three-hole
ground state multiplet with the Hubbard interaction, using equation (34). The four independent
elements at the optimal value U/t ∼ 5, where the W = 0 pair binding energy is maximum,
are

γ1 = 〈B1 |HE1x |Ex 〉 = 0.17gox, (41)

γ2 = 〈B1 |HE2y |Ex 〉 = 0.24g + 0.17gox, (42)
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Figure 3. Adiabatic potential energy surfaces along B2 for the ground and first excited three-hole
states of CuO4. Here, qB2 denotes the classical normal coordinate; U = 5 eV, t = 1 eV, g = −2.4,
gox = 0.6 in units eV Å−1, and ωη = 0.1 eV ∀η; the displacement qB2 is in Å, energies are in eV.
The ground state multiplet is below the first excited state by ∼1 eV.

γ3 = 〈Ex |HB1|Ex 〉 = 0.24g, (43)

γ4 = 〈Ey |HB2 |Ex 〉 = −1.05gox. (44)

The JT Hamiltonian reads

HJT(3) =
[

E0(3) +
∑

η

h̄ωηb†
ηbη

]
⊗ 13×3 +

∑
η

ξη(b
†
η + bη)Mη, (45)

where E0(3) is the ground state energy of H CuO4
el with three holes and

MB1 = γ3

( 0 0 0
0 1 0
0 0 −1

)
, (46)

MB2 = γ4

( 0 0 0
0 0 1
0 1 0

)
, (47)

ME1x =
( 0 γ2 −γ1

γ2 0 0
−γ1 0 0

)
, (48)

ME1y =
( 0 −γ1 −γ2

−γ1 0 0
−γ2 0 0

)
, (49)

ME2x = γ1

( 0 −1 1
−1 0 0
1 0 0

)
, (50)

and

ME2y = γ1

( 0 1 1
1 0 0
1 0 0

)
. (51)
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Figure 4. (a) The vibronic correction �E to E0(3) for the E state (lower surface) and the B1 state
(upper one) as a function of g and gox. (b) The same surfaces from another point of view. Here,
t = 1 eV, U = 5 eV, �E is in eV and h̄ω = 0.1 eV, g and gox are in units of ε0/ξ0 = 1 eV Å−1.
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Figure 5. 〈q̂B1 〉 as a function of −g
and gox. Here t = 1 eV, U = 5 eV,
〈q̂B1 〉 is in units of ξ0, g and gox are in
units of ε0/ξ0 = 1 eV Å−1.

We numerically diagonalized HJT(3) in the Hilbert space spanned by |η〉⊗|�Nph 〉, where
η = B1, Ex, Ey is the electronic state and |�Nph 〉 is a vibration state in the truncated Hilbert
space with all modes having vibrational quantum numbers �Nph. Excluding the breathing
mode the size of the problem is 3(Nph + 1)6. We consider Nph = 3, since already in the weak
coupling regime �̃ changes sign. We studied ωη = ω = 0.1 eV, λη = 1 ∀η in the range of |g|
and |gox| between 0 and 2.4 eV Å−1, which means that the number ratios |γi |

√
h̄

2Mω
/h̄ω vary

between 0 and 0.5. This weak coupling condition ensures that Nph = 3 is indeed adequate.
The results are shown in figure 4.

The lower surface represents the ground state energy shift �E for electronic states
belonging to the degenerate irrep E, while the higher one is �E for the B1 state. The JT
effect partially removes the threefold degeneracy and the ground state is an E doublet. Note
that according to the textbook, static JT effect, one should observe a total removal of the
degeneracy. This is however not borne out by the dynamical calculation and, for gox = 0, all
three states remain degenerate (see figure 4(b)).

The way the system dynamically distorts is also of interest. The only vibration having
a coordinate on the diagonal of HJT(3) is B1; thus, the E doublet can only distort along the
B1 normal mode. In other words, with q̂B1 = ξB1(b

†
B1

+ bB1), 〈q̂B1〉 ≡ 〈0
Ex

|q̂B1 |0
Ex

〉 =
−〈0

Ey
|q̂B1 |0

Ey
〉 �= 0. The trend of 〈q̂B1〉 as a function of g and gox is shown in figure 5. We

observe that 〈q̂B1〉 → 0 as g → 0; we also remark that the deformation depends essentially
by g and only weakly on gox because according to equation (43) the coupling constant γ3

responsible for the distortion along B1 depends on g and not on gox. The E–B1 splitting, in
contrast, depends on gox and only weakly on g. The naive expectation that splittings accompany
distortions only holds for static ones.
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Figure 6. The ground state energy shift
�E as a function of gox. Here t = 1 eV,
U = 5 eV, �E is in eV, gox is in units of
ε0/ξ0 = 1 eV Å−1, λB2 = 1, ωB2 = 0.1 eV.

6.2. Four-hole ground state mixing

With four holes, H CuO4
el has a twofold-degenerate ground state; it belongs to the two-

dimensional irrep of S4 that breaks in A1 ⊕ B2 in C4v. Thus, the only JT-active mode is
B2, which makes the problem exactly resolvable in terms of a continued fraction [31].

Following again equations (40), the second-quantized JT Hamiltonian with four particles
reads

HJT(4) = [h̄ωB2 b†
B2

bB2 + E0(4)] ⊗ 12×2 + ξB2γ5(b
†
B2

+ bB2)

(
0 1
1 0

)
. (52)

in the space spanned by the electronic ground states. The coupling constant γ5 is given by

γ5 = 〈A1 |HB2 |B2〉 = 1.19gox, (53)

where, as usual, the matrix element in equation (53) is evaluated at U/t ∼ 5.
The ground state energy of HJT(4) in the sector of symmetry η coincides with the lowest

pole of the Green function:

Gη,η(E) = 〈〈0| ⊗ 〈η| 1

E − HJT(4) + i0+
|η〉 ⊗ |0〉〉

= 1

χ(0) − (ξB2γ5)
2

χ(1) − 3(ξB2γ5)
2

χ(2) − 5(ξB2γ5)
2

χ(3) − 7(ξB2γ5)
2

χ(4) − · · ·

, (54)

where η = A1, B2 and χ(n) = E − E0(4) − nh̄ωB2 . Gη,η(E) does not depend on η and the
energy corrections in the A1 and B2 sectors are the same. The ground state energy shift �E
as a function of gox is plotted in figure 6.

There are no diagonal couplings in equation (52), which implies no distortions; the energy
correction is much smaller than in the three-hole case.

In figure 7 we show the adiabatic potential curve, with the same parameters as in figure 7.
In contrast with the three-hole case, the ground state multiplet is separated from the excited
states by ∼100–150 meV which is comparable with the phonon energies. Hence we expect,
in this case, the approximation restricting the Hilbert space to the lowest multiplet not to be
justified. However, in the case of weak coupling to soft vibrations, with ω small compared to
the gap in the electronic spectrum, this approximation should work well.
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Figure 7. The adiabatic potential energy curve for the low lying four-hole states of CuO4. Here,
qB2 denotes the classical normal coordinate; U = 5 eV, t = 1 eV, g = −2.4, gox = 0.6 eV Å−1,
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Figure 8. �̃ as a function of −g and
gox, according to the theory of the
present section. �̃ is in eV, g and gox
are in units of ε0/ξ0 = 1 eV Å−1.
Here t = 1 eV, U = 5 eV, ωB2 =
0.1 eV.

6.3. W = 0 pairing in the presence of Jahn–Teller distortions

Collecting together the results of the present section we obtain the behaviour of �̃ in a popular
approximation that neglects the excited electronic states. In figure 8 we show the plot of �̃

as a function of −g and gox, shown with the zero-energy plane. The maximum distortion
along B1 compatible with �̃ < 0 (see figure 8) is 〈qmax

B1
〉 � 3 × 10−2 Å, which is attained at

g � 1 eV × Å−1 and gox = 0.
Both the system with four holes and that with three holes gain energy by the JT effect; �̃

remains negative only in the weak EP coupling regime, since the decrease of 2E(3) overcomes
the decrease of E(4). This is due to the fact that the system with three holes can gain energy by
mixing with B1, B2, E1x , E1y, E2x , E2y vibrations, while the system with four holes can do it
only with the B2 mode. Moreover, the factor 2 in front of E(3) in the expression for �̃ further
favours the distortion in the three-hole case.

These results, in line with [18], would imply that the electronic pairing is limited to
relatively weak EP couplings and that at any rate the vibrations are invariably detrimental to
W = 0 pairing. However, we know from section 5 that this conclusion is remarkably but
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Figure 9. Exact diagonalization results for �̃(4) in eV, with only the A1 phonon active, Nph = 20,
as a function of gox for different values of g: g = −0.2 (crosses); g = −0.5 (triangles); g = −1
(diamonds). Here we used t = 1 eV, tox = 0, U = 1 eV; gox and g are in units of ε0/ξ0 = 1 eV Å−1.

definitely wrong, because the full theory predicts synergy of vibrations and W = 0 pairing at
least at weak coupling. This failure of the JT Hamiltonian is due to the neglect of the electronic
excited states, causing a severe overestimation of the four-hole energy. The physical reason
is that if we restrict the mixing to the degenerate states the electronic wavefunction is too
rigid. On the other hand, including all the multiplet of states arising from the degenerate
one-electron level, the pair can achieve the flexibility which allows it to follow adiabatically
the vibration-induced deformations, as we shall see in the next section.

Detecting the failure of a textbook procedure is in itself a potentially very interesting
result; it is a merit of a relatively simple model like this that it allows one to understand in
detail how this arises.

7. Numerical results of the full theory

Since the conventional JT Hamiltonian is not enough, to see what really happens in this model
with increasing EP coupling, where the analytic treatment of section 5 loses validity, we resort
to numerical methods. In this section we explore the pairing scenario numerically, which offers
an independent check of the weak coupling calculations and permits one to go beyond the weak
coupling regime. First, we analyse one phonon at a time (λη = 1), turning off the all others
(λη = 0); ωη ≡ 0.1 for all modes. In this way we see which kind of phonon is cooperative with
the W = 0 pairing and which is not. We have performed these calculations in a virtually exact
way, by including a number of phonons Nph up to 20. To this end we take advantage of the
recently proposed spin-disentangled diagonalization technique [11]. The results are shown in
figures 9–11.

The plots show the trend of �̃(4) as a function of gox and g. It appears (see figures 9
and 10) that if gox is increased, the A1 and B2 phonons enhance the pairing, even beyond the
weak coupling regime. The further enhancement of |�̃(4)| due to A1 as |g| is increased is not
predicted by the weak coupling theory (equation (36)). The B1 phonon is slightly suppressive,
but it affects the pairing energy on a scale of 10−5 eV and hence its contribution is negligible.
On the other hand, the (longitudinal and transverse) E phonons (see figures 10 and 11) have
an unambiguous tendency to destroy the pairing. In particular, the E1 mode does it both by
increasing gox and by increasing |g|.

The results presented show that the behaviour of the individual phonons is essentially the
same as predicted analytically in section 5: some of them (A1 and B2) act in a cooperative



Electron–phonon interactions in the W = 0 pairing scenario 4861

0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

∆∼

oxg

Figure 10. Exact diagonalization results for �̃(4) in eV, with only one phonon active, B2 (triangles)
or E2 (diamonds), Nph = 20. Here we used t = 1 eV, U = 1 eV; gox and g are in units of
ε0/ξ0 = 1 eV Å−1.
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Figure 11. Exact diagonalization results for �̃(4) in eV, with only the E1 phonon active, Nph = 20,
as a function of gox for different values of g: g = −0.2 (crosses); g = −0.5 (triangles); g = −1
(diamonds). Here we used t = 1 eV, tox = 0, U = 1 eV; gox and g are in units of ε0/ξ0 = 1 eV Å−1.

way with the electronic pairing mechanism; some others (E phonons) do not; the B1 mode
is quite inactive. However, for a proper understanding of the conflicting vibronic effects we
need to include as many phonon modes as possible at the same time. In this case the exact
diagonalizations become hard even with a modest Nph per vibration. We performed exact
diagonalizations of H CuO4

el−latt with five active modes; with five holes, the size of the problem is
100(Nph + 1)5; we could afford Nph = 3 for each. Some results are shown in figure 12.

In figure 12(a) we included the vibrations with η = A1, B1, B2, E2x , E2y ; one notes a
strong, monotonic increase of the binding energy with both gox and |g|. The weak coupling
theory of section 5 qualitatively explains the gox dependence but not the |g| one: when the
EP coupling gets strong, the Cu–O stretching becomes important. In figure 10 (diamonds)
we noted that the E2 vibrations alone tend to destroy pairing; here we observe that when they
compete with A1 and B2 their effects are utterly suppressed. It is possible that the couplings
to the pair breaking E modes are somewhat underestimated due to the choice of λ parameters.

In figure 12(b) we included the vibrations with η = A1, B1, B2, E1x , E1y , and we observe
that �̃ now becomes positive at moderate gox. Comparing with the above results on individual
modes, we observe that in going from figures 12(a), (b) we are replacing the pair breaking
transverse E2 phonons by the pair breaking, longitudinal E1 modes. We conclude that the
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Figure 12. �̃(4) in eV as a function of gox for different values of g. λη = 1 for all the vibrations,
except: λη = 0 for η = E1 (a); λη = 0 for η = E2 (b); λη = 0 for η = A1, B2 (c). Nph = 3 for
each active mode; g = −0.2 (diamonds); g = −0.5 (triangles); g = −1 (crosses). Here we used
t = 1 eV, tox = 0, U = 1 eV; gox and g are in units of ε0/ξ0 = 1 eV Å−1.

longitudinal ones are more efficient in restoring the repulsion and at intermediate coupling
they overwhelm the pair healing A1 and B2.

However, for gox � 0.15 eV Å−1, the cooperative modes prevail and �̃(4) becomes
negative again. This remarkable behaviour could not be anticipated from the weak coupling
approach of section 5, where only the one-phonon exchange diagrams were included as in the
BCS theory.

In figure 12(c) the active modes are η = B1, E1x , E1y, E2x , E2y ; these are all pair breaking
individually and, switching them together, they readily unbind pairs, leading to strong positive
�̃. However, unexpectedly, we again find attraction at large enough gox.
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It is likely that the couplings to the pair breaking E modes are somewhat overestimated due
to the choice of λ parameters in figures 12(b) and (c). The pairing at strong coupling observed in
figures 12(b) and (c) results from more complicated interactions leading to bipolaron formation.
This recalls the charge-ordered superlattice phase found in [25];however, they used a Hubbard–
Holstein model and, since the system is one dimensional, the electronic pairing does not occur
in their case.

8. Conclusions

Introducing vibrations and vibronic couplings into a strongly correlated model opens up a rich
scenario where, among other possibilities, pairing can be achieved by a synergy of electronic
correlation and phonon exchange. A possible outcome, however, is competition among
different symmetry vibration modes and electronic excitations. We illustrate the situation
by using a CuO4 model that allows a full treatment of all degrees of freedom and hosts bound
W = 0 pairs when undistorted, has vibrations of the same symmetries as the CuO plane, and
is numerically affordable. A popular recipe for computing JT distorted molecules prescribes
restricting to the degenerate electronic levels, letting them interact with the JT-active modes.
A static treatment invariably leads to a complete removal of the symmetry and a nondegenerate
ground state. We put forward a fuller dynamical theory which partly preserves the degeneracy;
however, the vibrations are always opposing W = 0 pairing which is thereby reduced to a weak
EP coupling effect. This restricted basis, however, may only be valid provided that the excited
states of the unperturbed electronic Hamiltonian are far removed from the ground state on the
energy scale set by the frequency of the relevant phonon modes. With the cuprates in mind, we
consider a situation where the phonon energies and the superconducting gap are comparable,
in the 0.1 eV range; we diagonalize the full model keeping up to five simultaneous modes and
vibrational quantum numbers Nph � 3. Depending on the parameters, a rich phenomenology
emerges from the numerical data. Pairing prevails at weak EP coupling, as expected, but the
phonon contributions which dominate in such a case turn out to contribute to the pairing rather
than opposing it. The correct trend is predicted by a canonical transformation approach, which
also explains the pairing or pair breaking character of the modes. In particular it is found that
the half-breathing modes give a synergetic contribution to the purely electronic pairing; since
they are believed to be mainly involved in optimally doped cuprates, our findings suggest a
joint mechanism, with a Hubbard model that captures a crucial part of the physics.

This agreement validates the canonical transformation approach, which allows one to
carry out useful calculations even in large systems that do not lend themselves to exact
diagonalization.

At intermediate coupling the outcome of the theory depends essentially on the relative
weight of the coupling to the longitudinal and transverse vector modes, which destabilize
pairing most effectively.

Remarkably, however, the vibrations restore pairing again at strong coupling, when a
bipolaronic regime prevails. This scenario was also derived in the context of an extended t–J
model, where the half-breathing mode was found to enhance electronic pairing [17, 32].

Finally, experimental data on nanopowders [33] also indicate that one should not be
overly pessimistic about cluster calculations. The pairing that shows up there can be relevant
and provide physical insight concerning the interplay of various degrees of freedom for pair
structure and formation.
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Table A.1. The character table of the C4v symmetry group. Here 1 denotes the identity, C2 the
180◦ rotation, C (+)

4 , C (−)
4 the anticlockwise and clockwise 90◦ rotations, σx , σy the reflections with

respect to the y = 0 and x = 0 axes, and σ+, σ− the reflections with respect to the x = y and
x = −y diagonals. In the last column we show typical basis functions.

C4v 1 C2 C (+)
4 , C (−)

4 σx , σy σ+, σ− Symmetry

A1 1 1 1 1 1 x2 + y2

A2 1 1 1 −1 −1 (x/y) − (y/x)

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 (x, y)

Table A.2. One-body levels of the CuO4 cluster in units of t; the last line reports the values for
tox = 0 which are used in the text.

εA1
t

εB1
t

εEx
t

εEy
t

εA1
′

t

τ − √
4 + τ 2 −2τ 0 0 τ +

√
4 + τ 2

−2 0 0 0 2

Appendix A. W = 0 pairs in the CuO4 cluster

The CuO4 Hubbard Hamiltonian has C4v symmetry. When the oxygen–oxygen hopping is
absent, the symmetry group is the permutation group S4, and although for convenience we
continue to use the subgroup C4v labels, it is S4 that must be used for the W = 0 theorem [12].
The character table appears as table A.1.

Setting for simplicity εd = εp = 0, the one-body spectrum of the CuO4 Hamiltonian has
the eigenvalues given in table A.2.

Here we label the eigenvalues with the irreps of the corresponding eigenfunctions. The
level energies are in units of t , τ ≡ tox/t; for tox = 0, εEx = εEy = εB1 = 0. The corresponding
one-body creation operators for a particle in each of these eigenstates are

c†
Eyσ

= 1√
2
(p†

2σ − p†
4σ ), (55)

c†
Ex σ

= 1√
2
(p†

1σ − p†
3σ ), (56)

c†
B1σ

= 1
2 (p†

1σ − p†
2σ + p†

3σ − p†
4σ ), (57)

c†
A1σ

(1) = 1

α2 + 4
(αd†

σ + p†
1σ + p†

2σ + p†
3σ + p†

4σ ), (58)

c†
A1σ

(2) = 1

β2 + 4
(βd†

σ + p†
1σ + p†

2σ + p†
3σ + p†

4σ ), (59)

where α and β depend on τ as follows:

α = 4
(−1 − τ 2 + τ

√
4 + τ 2

)
−5τ − 2τ 3 +

√
4 + τ 2 + 2τ 2

√
4 + τ 2

, (60)

β = 4
(
1 + τ 2 + τ

√
4 + τ 2

)
5τ + 2τ 3 +

√
4 + τ 2 + 2τ 2

√
4 + τ 2

. (61)

By the W = 0 theorem [12], the irrep A1 ⊕ B2 of the group S4 which is not represented in the
one-body spectrum must yield singlet eigenstates with no double occupation. Projecting, one



Electron–phonon interactions in the W = 0 pairing scenario 4865

Table B.1. Shorthand notation used in equations (63)–(65).

1

d1
= −εA1 + εA′

1

1

d2
= −εA1 + ωB1

1

d3
= −εA1 + ωE1

1

d4
= −εA1 + ωE2

1

d5
= εA′

1
+ ωE1

1

d6
= εA′

1
+ ωE2

finds

φ
†
A1

= − 2√
3

c†
B1↑c†

B1↓ +
1√
3
(c†

Ex ↑c†
Ex↓ + c†

Ey↑c†
Ey↓),

φ
†
B2

= 1√
2
(c†

Ex ↑c†
Ey↓ + c†

Ey↑c†
Ex ↓).

(62)

These are readily verified for creating W = 0 pairs.

Appendix B. Pair binding energy

Here we calculate �̃ for the B2 pair in the CuO4 cluster using second-order perturbation theory
in both W and V and compare with � obtained by solving equations (37), (38). Basically the
same holds for the A1 pair. λη ≡ 1 throughout this appendix.

The ground state with two particles belongs to A1 and, using the notation of table B.1, its
energy reads

E(2) = 2εA1 +
5

16
U + U 2

[
3

128εA1

− 61

512
d1

]
− g2(d2 + 2d3) − g2

ox(d3 + d4) + 2
√

2goxgd3.

(63)

With three particles, the ground state is an E doublet, and

E(3) = 2εA1 +
7

16
U + U 2

[
5

64εA1

− 53

512
d1

]
− g2

[
d2 +

3d3

2
+

d5

2

]

− g2
ox

[
2

ωB2

+
1

2ωE1

+
1

2ωE2

+
d5

4
+

d6

4
+

3d3

4
+

3d4

4

]
−goxg

[
−3

√
2d3

2
+

√
2d5

2

]
.

(64)

The ground state with four particles belongs to B2, as predicted by the canonical transformation;
one gets:

E(4) = 2εA1 +
9

16
U + U 2

[
25

128εA1

− 29

512
d1

]
− g2[d2 + d3 + d5]

− g2
ox

[
8

ωB2

+
1

ωE1

+
1

ωE2

+
d3

2
+

d4

2
+

d5

2
+

d6

2

]
+ goxg

√
2[d3 − d2]. (65)

Finally, using equation (1) and setting ωη = ω0, we obtain

�̃(4) = −U 2

16

[
− 1

εA1

− 1

2(−εA1 + εA′
1
)

]
− g2

ox
4

ω0
. (66)

This must be compared with equation (38), section 5, that can be solved iteratively for
�(4) = E−2εA1 inserting εB1 = 0 from appendix A. The second iteration yields equation (66),
supporting the identification �̃(4) = �(4) at this order. Both quantities represent the effective
interaction of the dressed B2 W = 0 pair. Indeed, much information about the ground state
energies cancels out if one applies equation (1); using the canonical transformation is a much
more practical way to represent the effective interaction.
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